ANALYSIS OF SOET EMISSIONS USING DIESEL - METHANOL (CH3OH) MIXTURE ON L-300 VEHICLES

Langgeng Asmoro1*, Reza Yoga Anindita2, Aris Budi Sulisty03, Rahmat Ahmad4
1Program Studi Teknologi Rekayasa Otomotif, Politeknik Keselamatan Transportasi Jalan, Jalan Semeru No 3, Tegal, Jawa Tengah 58111, Indonesia
2Program Studi Rekayasa Sistem Transportasi Jalan, Politeknik Keselamatan Transportasi Jalan, Jalan Semeru No 3, Tegal, Jawa Tengah 58111, Indonesia
3Politeknik Transportasi Darat Bali, Jl. Cemp. Putih, Samsam, Tabanan, Kabupaten Tabanan, Bali 82111 Bali
*langgeng@pktj.ac.id

Abstract

In this research, it is intended to identify the concentration of soot in the exhaust emissions of the L-300 diesel engine by adding an additional substance in the form of methanol CH3OH. The research method in this study used an experimental method with the help of a smoke tester used to test the soot concentration in exhaust emissions of diesel motorized vehicles. The experiment was carried out at night using different mixtures and where each mixture will be carried out 8 times to collect data. Experiments used a smoke tester to test soot emissions on: fuel not mixed with methanol additive (M0D100), 5% methanol mixture (M5D95), 10% methanol (M10D90), 15% methanol mixture (M15D85). After carrying out the research and data processing, it was obtained that the M0D100 mixture had a soot emission concentration of 36.52%. The M5D95 mixture decreased the concentration of exhaust emissions to 31.05%. Then in the M10D90 mixture, the soot emission concentration decreased to 27.17%. whereas in the M15D85 mixture the soot concentration increased to 33.76%.

Keywords: diesel; emissions; methanol; soot

Introduction

Air pollution is associated with exhaust emissions resulting from an imbalance in emissions that have a negative impact on society. Approximately 60 percent of air pollutants are caused by motorized vehicle engines. (RR Ukirsari Manggalani, 2022). Exhaust gas emissions from diesel engines generally have the same content as gasoline engine exhaust emissions, but diesel emissions have lower emission levels (Sulistyo et al., 2023). Diesel engine exhaust emissions are HC, CO and NOX (Kamajaya, 2016)(Septiyanto et al., 2017). According to verury (Verury Verona Handayani, 2020) Air pollution from burning fossil fuels is the main cause of air pollution. The effects of air pollution include stroke, lung cancer and even heart disease (Cakrawati Sudjoko, 2021). To reduce these problems, additional materials or ingredients are needed that can reduce exhaust emissions, including the addition of methanol (Marbun, 2020). The purpose of this study is to determine whether methanol has an effect on reducing exhaust emissions and to determine the opacity of each mixture.

Vehicle exhaust emissions are residual substances that pollute the air which appear due to vehicle exhaust (Faris, 2022). Exhaust gas emissions on vehicles, namely exhaust air from the remaining combustion process of the vehicle engine which is channeled out into the free air through the exhaust or vehicle exhaust (Muhammad Umar Wahid, 2018). The types of exhaust emission particles produced by diesel engines are HC, CO and NOX. Explanation of compounds according to (Sugiarti, 2015), Carbon monoxide is the result of incomplete combustion of automotive fuel. Hydrocarbon (HC) emissions come from a variety of sources. Nitrogen oxides (NOx) are formed when vehicle fuels from fossils such as coal and petroleum are burned, and are formed when nitrogen in the open air is oxidized to NO (nitro oxide) and then oxidized back to NO2. Nitrogen oxide in the air we inhale can cause lung disease (Khasanah et al., 2018). Can react with the atmosphere, this substance produces very fine nitrate compounds, which then penetrate to the deepest part of the lungs (Hendrialdi et al., 2020)
Additive additives are additives that can also be added to motor vehicle fuel and whose purpose is to increase or reduce motor vehicle exhaust emissions (Syarifudin & Syaiful, 2019). Assessments carried out on diesel engines showed that the effect of using fuel additives as a combination of oxidized fuels (ethanol, dimethyl carbonate and dimethoxymethane) increased the cetane number and reduced the amount of smoke. g (Rahmadian & Permatasari, 2017).

METHOD

The experimental method was used in this study. Experimental research is a form of research that can be used to find out what these variables are and how the relationships between these variables are formed. In the classic sense, an experiment is a study that determines the effect of the treatment variable (independent variable) on the impact variable (the dependent variable). In this study, an experiment was conducted to determine whether methanol can reduce exhaust emissions in diesel engine vehicles and to determine the ratio of a mixture of diesel fuel and methanol to exhaust emission tests. The research design to determine the concentration level of soot emissions is as follows:

Preparation of tools and materials

<table>
<thead>
<tr>
<th>Tools and materials</th>
<th>Usability in research</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>biodiesel</td>
<td>As a vehicle fuel that will be tested</td>
<td>Vehicles can live</td>
</tr>
<tr>
<td>Methanol Additive</td>
<td>As material in research</td>
<td>Reducing exhaust emissions</td>
</tr>
<tr>
<td>L300 Diesel car</td>
<td>As an object in research</td>
<td>Research can be carried out</td>
</tr>
<tr>
<td>Smoke tester</td>
<td>To find out the test results of the study</td>
<td>Can know the test results</td>
</tr>
<tr>
<td>jerrycan</td>
<td>As a substitute for the material tank</td>
<td>The test results will be</td>
</tr>
<tr>
<td>Measuring cup</td>
<td>burn</td>
<td>more accurate</td>
</tr>
</tbody>
</table>

Procedure for measuring the soot emission concentration of diesel engines

In this study the fuel tanks were replaced with jerry cans in order to get more accurate results. The hose connected to the fuel tank is replaced with a jerry can filled with biodiesel fuel and additives. As shown in Figure 1Gambar 1. Skema Sistem Pengujian

![Figure 1](image1.png)

The data collection procedure is as follows:

1. Prepare a test vehicle, use a jerry can to replace the fuel tank so that the results are more accurate because there is no residual fuel mixed in the jerry can, then connect the hose leading to the tank to the jerrycan
2. Prepare the test equipment, make sure whether the tool is in a calibrated condition
3. Set up (accelerate) the RPM so that it reaches 2,900 rpm to 3,100 rpm and then hold for approximately 60 seconds and return to idle again;
4. Insert the smoke tester probe into the inlet exhaust gas pipe as much as 30 cm, if it is less than 30 cm, you need to install an additional pipe;
5. Press the gas pedal to the maximum (full throttle) quickly and reach maximum engine speed, and hold for 1 to 4 seconds. Release the gas then wait for the engine to idle again, record the soot concentration value;
6. Repeat data collection eight times;
7. The data will be in the form of a percentage of the average soot concentration value displayed in the form of a percentage (%) recorded on the test kit

RESULT AND DISCUSSIONS

This research was carried out at the periodic testing of motorized vehicles at UPT PKB Motor Vehicle Testing Bandung Regency with the test vehicle being the L-300 type car. The following are the experimental results of exhaust emission tests for diesel-fueled L-300 vehicles before and after adding additives with several variations of the mixture.

<table>
<thead>
<tr>
<th>mixture</th>
<th>data to-</th>
<th>1 (%)</th>
<th>2 (%)</th>
<th>3 (%)</th>
<th>4 (%)</th>
<th>5 (%)</th>
<th>6 (%)</th>
<th>7 (%)</th>
<th>8 (%)</th>
<th>Average (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0D100</td>
<td></td>
<td>38.4</td>
<td>36.4%</td>
<td>37.4</td>
<td>37</td>
<td>34</td>
<td>33</td>
<td>33</td>
<td>36</td>
<td>36.52%</td>
</tr>
<tr>
<td>M5D95</td>
<td></td>
<td>29.4</td>
<td>32.2</td>
<td>.2</td>
<td>29</td>
<td>34</td>
<td>33</td>
<td>29</td>
<td>33</td>
<td>31.05%</td>
</tr>
<tr>
<td>M10D90</td>
<td></td>
<td>26</td>
<td>24.5</td>
<td>.4</td>
<td>.6</td>
<td>.4</td>
<td>.3</td>
<td>.3</td>
<td>27</td>
<td>27.17%</td>
</tr>
<tr>
<td>M15D85</td>
<td></td>
<td>30.2</td>
<td>32.2</td>
<td>.6</td>
<td>.6</td>
<td>.7</td>
<td>.6</td>
<td>.3</td>
<td>36</td>
<td>33.76%</td>
</tr>
</tbody>
</table>

Information:
1. M0D100 1 liter biodiesel fuel that does not use methanol additives
2. M5D95 1 liter biodiesel fuel added 5% methanol additive (50ml)
3. M10D90 1 liter biodiesel fuel added additive methanol 10% (100ml)
4. M15D85 1 liter biodiesel fuel added additive methanol 15% (150ml)

In the table, exhaust emissions from diesel engine vehicles are shown in the form of smoke density or opacity. The results of emission tests for biodiesel-fueled vehicles using an exhaust emission tester (smoke tester) before and after the addition of methanol additives at different variations can produce smoke density

Completely Randomized Design

The completely randomized design is the simplest of the standard experimental designs. Completely randomized design (CRD) is usually used for laboratory experiments. This method is called a Fully Randomized Design because randomization of the treatments is carried out on all experimental variables (Ade Slinton Sitepu, 2022). The basis for decision making in a completely randomized design test is carried out as follows:
Hypothesis:
H_0: treatment has no effect on soot concentration results
H_1: treatment effect on soot concentration results

Decision making: Based on probability
if probability > 0.05 then H_0 is accepted
if probability ≤ 0.05 then H_1 is rejected

Table 3
Description of “Anova”

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Upper Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0D100</td>
<td>8</td>
<td>36.513</td>
<td>1.7860</td>
<td>.6314</td>
<td>35.019</td>
<td>33.4</td>
<td>38.4</td>
</tr>
<tr>
<td>M5D95</td>
<td>8</td>
<td>31.050</td>
<td>2.3275</td>
<td>.8229</td>
<td>29.104</td>
<td>28.2</td>
<td>34.1</td>
</tr>
<tr>
<td>M10D90</td>
<td>8</td>
<td>27.175</td>
<td>1.5980</td>
<td>.5650</td>
<td>25.839</td>
<td>24.5</td>
<td>29.4</td>
</tr>
<tr>
<td>M15D85</td>
<td>8</td>
<td>33.800</td>
<td>2.0791</td>
<td>.7351</td>
<td>32.062</td>
<td>30.2</td>
<td>36.2</td>
</tr>
</tbody>
</table>

Table 3 shows that the test results using no additives have an average test result of 36.51%, a minimum value of 33.4% and a maximum value of 38.4%. Using the additive methanol 50ml has an average value of 31.05%, has a minimum value of 28.2% and a maximum value of 34.1%. Using 100ml methanol additive has an average yield of 27.17%, has a minimum value of 24.5% and a maximum value of 29.4%. Using 150ml methanol additive has an average yield of 33.80%, has a minimum value of 30.2 and a maximum value of 36.2%. all done in 8 trials. Next to see the test in the Anova table.

Table 4
ANOVA One Way

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>381.708</td>
<td>3</td>
<td>127.236</td>
<td>32.870</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>108.384</td>
<td>28</td>
<td>3.871</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>490.092</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 shows that the Sig/Significance column yields a result of 0.00. Because the value is smaller than the value $\alpha = 5\% (0.05)$, then H_0 is rejected, which means that the treatment has a significant effect on salinity.

A. Regression Analysis
Regression analysis is a technique or method of analyzing research hypotheses to test whether or not there is an influence between one variable and another, which is stated in the form of a mathematical equation of the regression line (Tanoto, 2021).
The results obtained in the ANOVA table show that in the Significance/P value column, a result of 0.00 is obtained. Because the value is smaller than the value $\alpha = 5\%$ (0.05), then H_0 is rejected, which means that the treatment has a significant effect on salinity. Figure IV.5 contains a regression graph that uses a simple regression equation, namely that between the dependent/dependent variable is the result of exhaust emissions and the independent/free variable is methanol and biodiesel fuel additives which have a causal relationship, the equation is obtained: $y = -0.2432x + 0.3395$ $R^2 = 0.155$

Information is obtained that, if there is no mixture of additives or the value $x = 0$ then the emission value is 36.52%. If the mixture is added by $x = 0.05\%$, the emission will decrease by 31.05%. If the mixture is added by $x = 0.1\%$, the emission will decrease by 27.17%. Then the last mixture was added by $x = 0.15\%$, the emission increased from the previous one to 33.76%. On the coefficient of determination (R^2) a test is carried out to determine and/or predict the level of contribution of the influence given by the independent variables which together with the dependent variable. Based on Figure IV.5 the coefficient of determination on the variable (R^2) on the variable dose of the additive mixture is 0.155, this shows that all independent/free variables have an influence of 15.5% on the results of the exhaust emission test (dependent variable). While other factors, namely 84.5%, are influenced by other variables not tested in the study.

CONCLUSIONS
The addition of methanol additives in the ratio of each mixture produces different results. If no methanol is used, the average soot concentration is 36.52%. In the second test, the addition of 50 ml of methanol reduced exhaust emissions by 31.05%. In the 3rd test, there was an addition of 100 ml of methanol, the exhaust emissions were reduced by 27.17%. At the addition of 150 ml, exhaust emissions increased to 33.76 percent of exhaust emissions. The coefficient of determination for the additional mixed variable, namely the dose variable R^2, is 0.155, which means that all independent variables have an effect, namely 15.5%.

REFERENCE

